
!,

‘,
d

a+ .,,; “-

C3 ‘“ a ‘- f
-&
C2

‘r.
. .

;
.*
4

NATIONALADVISORYC(MWITEE
AERONAUTICSFOR

TECHNICAL NOTE 3718

THEORETICAL WAVE DRAG OF SHROUDED

AIRFOILS AND BODIES

By Paul F. Byrd

Ames Aeronautical Laboratory
Moffett Field, Calif.

Washington

June 1956

/- 1

—.

,

..- .. . . . .. . . . . . . . . . ... . . . . . . . . . . .. ..-. . . . . .



TECHLIBRARYKAFB,NM

N

..

,

IulllllIIIEIMllIlin
NATIONAL ADVISORY CCNMITTEE FOR AERONAUTICS nnhL33L

TEcBNrcAL Nam 3’718

THEORETICAL WAVE DRAG OF SBROUDED

AIRFOILS AND BODIES

By Paul F. Byrd

Formulas for the wave drag of shrouded symmetrical.airfoils and
shrouded bodies of revolution of arbitrary shape are derived by means of
linearized theory. In the case of the airfoils the shroud consists of
flat plates, and for the bodies of revolution the shroud is a cylindrical
shell. The results obtained hold for a Mach number range dependent on
the geometry of the configuration. Expressions are also given for deter-
mining a class of body shapes for which the wave drag is theoretically
zero.

INTRODUCTION

A body mtig at supersonic speeds has a wave drag which can be cal-
culated either from integrations based upon the pressure at the surface
of the body or by means of a momentum balance over a control surface sur-
rounding the body. The control-surface approach shows more clearly that
the wave drag is related to the transport of momentum in the Mach waves
created by the body. This approach also suggests the scheme of reductig
or destroying the wave drag through the use of a shroud as first shown by
Ferrari (ref. 1). With.such a shroud the waves are caught and reflected
to the body surfaces where they may be absorbed without further reflec-
tion. From the standpoint of the pressure exerted on the body itself,
it follows that the reflected waves may strike the rear portion of the
body in such a way as to provide a buoyaucy to overcome the resistance
of the body alone. The detrimental.effect of the additional friction drag
due to a shroud is not ficluded in the present study.

The principal object of the present investigation is to derive for-
mulas for the wave drag of shrouded symmetrical airfoils and shrouded
bodies of revolution of arbitrary skpe. The airfoil is shrouded by flat

‘. plates and the body of revolution is shrouded by a cylindrical shell.
Although many configurations are possible, the analysis here considers
the particular arrangement wh=e the shroud extends at least far enough

: forward to catch the Mach wave emanating from the body nose, and far
enough rearward to cast Mach waves on the base of the body. As a special
application of the results obtained, a class of body shapes, similar to

. . ..- ----——. . .-.. = ——— — — - .— --- —— —- -
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2 NACA TN 3718

those given by Busemamn (ref. 2) and Ferri”(ref. 3), are fouud for which
the wave drag is theoretically zero. t

For either the case of the airfoil or the body of revolution, the
analysis is based on the assumption of linearized theory end on opera-
tional methods using Laplace transforms. Ward (refs. 4 and 5) has shown
in considerable detail how operational calculus can be employed to treat
bodies of revolutim and quasi-cylindrical tubes. A similar approach will
be followed here, except that Heaviside notation is not used.

To the order of the analysis employed, disconttitities in the slope
of the airfoil are admitted, while for the body of revolution the gradient
of cross-sectional area and its derivative are assumed to undergo no
abrupt changes. In actual practice, disconttiuitiesproducing fixed com-
pression waves would certa~y upset the accuracy of the results even more
than for the airfoil or the body alone since the opposing surfaces offer
the possibility of shock-wave and boundary-layer interaction.

a.

A,B

Cp

D

f

F

SYMBOLS

speed of sound in free stream

cross-sectional area of body in

D
section drag coefficient,—

qo2

D
body drag coefficient,—

Qf

dimensionless

P- Po
pressure COeffiCieIltj—

qo

wave drag

F
function defined in equation (5), —

~oh

function deftiing upper surface of airfoil or
curve of the body of resolution

terms, ~
$oh2

generating

function satis~ng relation (53)

distance of shroud from x axis

—— .—.-
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10,I1,JO,

JIA>KI 1Bessel functions ”(ref.6)

z

m

M.

P

Po

q.

R

s(x)

Sf

to

U.

x

Y

xl “

$0

n

P

E

P.

9(E,?)

length of body, or chord length of airfoil

2$oh

L

Mach number in the free stresm

local pressure

pressure in free stresm

PO%2
free-stream dynsmic pressure, ~

radius of body

cross-sectional srea of body

frontal area of body

maximum thickness of body

free-stresm velocity

Cartesian coordinate in free-stresm direction

Cartesian coordinate, measuring vertical distance for airfoil
and radial distance for body

Bessel function (ref. 6)

dimensionless variable introduced in equation (4), ~

Mach angle, arc sin A
%

dtiensionless variable introduced in equatiou (4), ~
pou

“free-stresmdensity

perturbation velocity potential in dimensionless terms, ~
o

. . .. . ——. —. —-— ..-...-. ..— _ _ __ --- —— ----_—-—___ -
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@(x,y) perturbation velocity potential

(1

(-)

influence function deftied in

Laplace transform of function

lmrmMAmcAL SIYmmmT

I-V4 ~w-- 1/4+

(t30h=l/4)

Sketch (a)

(v4<130h<l/2)

Sketch (b)

equation (35)

OF PROBIJW
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or
at

Consider a symmetrical airfoil
slender body of revolutim placed
zero angle of attack at Mach nuuiber

~ =Uo/~ >1, where a. is the
speed of sound in the free stream and
where Uo, the free-stream velocity,
is alined with the x axis. The y
axis measures vertical distance h
the case of the airfoil and radial
distance in the case of the body.
The nose of the body is at the origin
of the coordhate system.

In the configurations to be con-
sidered the airfoil is shrouded by
two flat plates and the body of revo-
lution is shroudedby a cylindrical L
tube. The shrouding plates (or tubes)
are placed so that the distance h
by which the shroud is removed from the
X tiS iS such that 7/k<~oh~ 2/2,

wh~e j30= cot v =_=dl
is the body length. The shroud is
required to extend at least from
x=~ohto x=z-~oh,butit would
produce no additional effects on the
body if it were longer. Sketches (a),
(b), and (c) show the geometry of the
configuration with either the airfoil
or body of revolution ti three typi-
cal arrangements. If ~oh = 1/4, all
the Mach waves fran the forward por-
tion of the body sre reflected onto
the rearward, and when ~oh~Z/2

there is no effect of the shroud since
the waves are reflected behind the
body.

..

(&hW2)

Sketch (c)

--
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The upper surfa@e (or generating curve) of
assumed given by the function

Y = F(x)

It will also be assumed that the bodv closes at

5

the airfoil or body is

(1)

both ends (i.e., that
F(0) = F(l) = O) and that the thickness-length ratio of the body is suf-
ficiently small relative to the Mach angle v that linearized theory
applies. As a result, the perturbation velocity potential Q(x,y)
satisfies the partial differential equation

Za% a%
Po~-—

vi)~ o

ti2 -7~=

together with the boundary conditions

()f a4 .Fvg

‘o & y=vF ax’
o~x<l

()1?)0—— =0,
Uo ~y=h

~oh~x~t-f30h
1

(2)

(3)

where the parameter v equals O and 1, respectively, for the airfoil
and body of revolution. One then has the problem of finding a solution
of ~, and from this to determine the drag of the configuration.

If dimensionless variables ~, q, q defined by the relations

are now introduced, the expression
for the body surface, as given by
equation (l), becomes

with m= ~oh/Z, and sketch (b)

becomes sketch (d). The differen-
tial equation is then

dE,n) = @(x,y)/Uoh (4)

I,/ /“ “\.//’1, ,~’
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Sketch (d)
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(6)

(7)

Operational methods based upon the Laplace transform are suited for
treating the basic clifferential equation (6) for either the airfoil or
the body of revolution. Denoting the Laplace transform of a function

and
the

g(s;q)= /
do

employing this transformation
differential equation

for relations

.

together with the boundary conditions

. . —

(8)

(6) and (7), one obtains ~

and

(9)

(lOa)

(lob)

Once @ has been det~ed frrnnequation (9), the drag of the shrouded
figures can be calculated. Jn order to carry out the calculations, it is
convenient to treat the airfoil and body-of-revolution problems separately.
The analysis for the airfoil offers little in the way of novelty but will
be given first since it illustrates the frsmework of the methods employed.

.. —.—— .-— -.-—— .. .. . . .
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AIRFOIL WITH @IROUDING PLATES

7

Evaluation of Wave Drag

The solution of equation (9) for the case of
when V = o) is

@(s;Il)=dS)e-s~ +l)(s)esn

the airfoil (i.e.,

~ (U)

Since vertical symmetry etists in the flow field, attention can be limited
to the upper half of the figure. Over the forward part of the airfoil the
downstream inclination of the outgoing waves tidicates, furthermore, that
the second term in the armwer (11) can be deleted. Imposing the boundary
condition (lOa), one then has

t

-sa(s)e-s~1 =s? ,
~=o

a(s)=-F

and it follows that
relations

or, in terms of the

Q(x,y) = -

where m = 2j30h/1,

the perturbation velocity potential satisfies the

@(s;q) = - ?e-sv

1dE,l’1) = - f(E - n) .

physical variables,

(122)

l/2<m~l.

The flow around the forward portion of the airfoil is given by equa-
tions (12); in order to predict the flow around the rearward portion.
however, it is necessary to determine the nature of the inco&g wav&
from the plate. The velocity potential of these incoming waves can be
obtained from the second terniin the right member of equation (lI).
Boundary condition (lob) requires that vertical velocitybe zero at

? = 1. From equations (12) and (11), therefore, one has

sb(s)esq]q=l= -s?e-sq]q==; b(s)=- ?e-2s

—-..- --- -.—— .— —— . -—— .— —-
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Hence the potential cpa of the inccming waves is determined by

- -s(2-q)@2(s;q) = - fe

4,71) = - f(E +T - @ 1

(13)

and the potential in the region of the plate is

v= -f(g-q)-f(g+ q-2)

If the potertial q aver the rear of the airfoil is written in the
fOrm

and ~~ is assumed expressible by terms of the form a~(s)e‘s~, the
boundary condition (lOa) melds

Thus aa(s) = -

- -fhq=o -- sfe 1sa~(s)e-s~~=o = s?

Te-2s - ?, so that

The potential over the rear of the airfoil is then given as follows:

T(E)~)= -f(E-n- 2)- f(E+n-2)-f(E -q) (14’2)

or finally

@(x,y)= -~[F(x-poy -mZ)+F&+~&-mZ) +F(x-~~)] , mZ ~x-~~< Z

(lhb)

It remains now to find the expression for wave drag on the surface.
h the physical variables, the total wave drag is

-. ----- . ..— .—. .— .—z. —— .-.. —
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where q. = poUo2/2 is the dynamic pressure in the free stream of density

P(-J“
the

and

With the substitution,

pressure coefficient on

=&Fl(~) ,
$Po. ,

from thin-airfoil theory,

the airfoil surface is

Cp = - (2/uo)(a@/ax),

%? =~[F’ (x) +2F’(x -ml)] , ml<x

(1/2<m

J

the drag, e~ressed in coefficient form, can be written as

J’42
z

%=~mz [F’(x)+F’(x-mZ)]2dx+~
J

1

[F’(x)]2dx , l/2~m~ 1

0 (l-m)Z

Jm>l

(16)

If the reflecting plates of the configurationare designed for a fixed
height h, formulas (16) give the drag coefficient of a shrouded airfoil

of arbitrary shape for Mach numbers ~ ~ 1 + Z2/16h2. when
@oh = 2/4 (m= 1/2), the waves we reflected from the forward portim

of the airfoil onto the rearward as in sketch (a), and for m > 1 the
reflected waves do not intersect the airfoil. Formulas (16) thus yield
results for an airfoil with or without shroud.

Consider, as a simple exsmple, the shrouded biconvex airfoil section
whose upper surface is defined by

2to
F(x) =~x(2 -x), ogx~2 (17)

where to is the maximum thickness of the airfoil. The drag coefficient,
given by fomulas (16), iS then

.- - . . .——. ——.— . —. ——.— — .—. ———— -- —.
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()~ to=
cd. — —

3$0 z ‘

{J.JJ
m

Sketch (e)

“~
(18)

m>l

with the parameter m = 2$oh/1. It

is seen in sketch (e) that for this
special case, the value of ~ocd for

l/2~m<l is always less than its
value for m ~ 1, end that a relative
minimum occurs at m = l/&. If the
ratio- h/Z is fixed, formulas (18)
give the drag of the shrouded atifoil
as afuncti(m of f30for PO ~ Z/4h.

Shrouded Airfoils Ha- Zero Wave Drag “

Deterndnation of shape.- Although formula (16) for the drag coef-
ficient will in general be greater than zero, there exist classes of
airfoil shapes for which the drag,is theoretically zero. Since the two
integrals in the first expression = equations (16) can never be negative,
the necessary and sufficient condition that the drag vanish is that

F?(x) =- Ft(x-m2) , mz<x~l

F?(x) =0 , (1-m) 2~x~mZ
1

After integration, these relatimm become

~F(mZ) -F(x-m2) =F(x) -~F(m7) , m2~x<Z

\
F(x) =F(mZ) , (1-m) l~x<mt

J

Thus the airfoil can be drawn in an arbitrary manner from x = mz
x= Z and the forward portion of the airfoil shape in the titerval
O~x~(l-m)Z isdet erm5ned; the portion in the interval

(lga)

(lgb)

to

,.
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(1-m) 2<xgmZ is
flat and eaual to . I
F(ml). Sl&ch (f) ~1
shows the geometrical I
construction of the
profile. The upper
half of such an air-
foil is equivalent to
the lower wing of the
linearized version of
a Busemann biplane
arrangement, while the
lower half is the upper
wing.

U.

qkfiedarbitrdly

-------------------
I

0 l-ml ml 1
p-x-ml+

Sketch (f)

For the special case when m = 1/2, as in sketch (a),
can be written in the form

‘(x)-*F(:)=*F($-F(X-2)

If, morewer, the airfoil is assumed to be
F(x) =’(2 - x) and equation (19c) becomes

z/25 x”51

symmetrical fore

\

equations (1*)

‘(x)-*F(ii)=*F(ii)-F(+-x)~0sxsz’2

(19C)

and aft,

(lgd)

In this event the forward half of the airfoil has odd symmetry about the
ordinate of the quarter-chord position and, similarly, the resr half has
odd symmetry about the three-qusrter chord position. It iS dSO found
that the pressure distribution on the airfoil has fore-and-aft symmetry.

Drag for off-desi~ condition.- A shrouded airfoil whose geometry
satisfies relation (lga), however, will only have zero drag for some
particular value of the parameter m, say ~. If such
moving so that the parameter m is different frm ~,
for the drag coefficient become

.

cd =

cd = J’
1

4 [F’(x)]=dx ,
Go

1

11
m>lJ

(20)

... . - .-—.- -.. —.. — — —— .. . .
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As an example, let the wper

?I

surface of the airfoil (shown iu
sketch (g)) be defined by

●

‘F--XAF(X)=*X(Z-X)’0“:2’2
I

Sketch (g) (a)

If the desi~ of the configuration is such that ~h = 2/2 (i.e.,

%)= 1/2), relation (19a) is

t/2~ f?poh~ Z, however, the
frcm equation (20), by

()16 to 2cd.—
3% ~

(-

satisfied so that there is no drag. When,

drag coefficient for the airfoil is given,

4ms +

Sketch (h)

BODY OF REVOLUTION

Evaluation

6m’-l), l/2~m~l

1

(22)

m>l

Aplot of ~oc~(to/Z)2 against m
is shown in sketch (h) for values of
m greater than 1/2. Below m = 1/2
the calculations become more involved
but the ssme general method is
applicable.

WITH SHROUDING

of Wave Drag

The soltiion of equation (9) for the case of
(i.e., when v = 1) is

the body of revolution

ljj(s;q)= a(s)&(s~) +b(s)Io(sq) . (23)

where Watson’s notation (ref. 6) for the Bessel functions ~ and 10 iS
used. Over the forward portion of the body the wave system is outgoing
and the solution can be formulated from the first term in the right

. . ..— —.—.——.-—— . .__-_.—_ ..— _______ ..
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member of equation (23). In order to impose the boundary condition (lOa),
one employs the relation

the last expression holding by virtue of the fact that q is small on
the body surface. The boundary condition then

M!?).a(s) = - ~

yields, for f(0) = 0,

(24)

where the quantity A is

(25)

S(x) being the cross-sectional area of the body. The solution over the
forward portion of the body is thus

(j5(s;q)= -&3z(s)KJsq) . (26)

From equation (26) and the boundary ccmdition (lob), the potential
92 of the incondng waves from the shrouding tube canbe calculated. If
the Laplace transform of 92 is assumed expressible in the form

02(W) =b(s)Io(sq) , &

h
= ski=

the boundary condition at q = lyields

sb(s)I=(s) = -
s2~(s)K=(s)

2fi

Thus @2 is given as follows:

8A(s)K=(s)Io(sq);
@2(s;q) = -

2fiIl(s)

; b(s) = -
s~(s)K=(s)

.
2YCI=(S)

~= S2X(S)K1(13)11(S?)

aq - 2TrI=(s)

(27)

.

.— <.. ..—— —.— — ——.. . — — ~- -—— ————-–
——. .—..
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Let

Q(EJn) =
terms of

NACA TN 3~8

the potential q over the rear of the body be writtm as

%&l) + %(M) where & is asswed to be given by the

the form a~(s)~(sq). In the previous case of the airfoil,

the normal gradient of CP2 at the airfoil surface was of the same order
as the imposed boundary condition and it was necessary to take proper
regard of Q= when-equation (lOa) was satisfied. lh the present case

the normal gradient of q= is of higher order (at the body surface) in

compwison with the contribution of

satisfied within the accuracy of the

ag(s) = - & 81(8) ,

q~, and the boundary condition is
theory by the relation

A(g) = Ycpof2(g) (28)

The solution over the rear of the body is therefore

J(s)K=(s)Io(sq) sx(s)~(sll)
@=- (29)

2YrI=(S) - 2Z ‘

In terms of the physical variables, the drag D of the configura-
tion can be written as an integral of pressure over the surface of the
body:

~={(y~m,x, gdx (30) ‘

Since for slender bodies of revolution the pressure-velocity relation
becomes

P
2

()

-Pcl= 2 a4 1 *—.
qo -~%Yuo2 ay

it follows that the drag titegral
variables, .

@m

1[
~=j30h2 -

0

is, in terms of the dimensionless

(31)

where the Laplace transforms of q are given by equation (26) for
OS ~ ~2 andby equation (a) for 2~ ~ <2/m~4. Proceeding to the
evaluation of the drag integral, we ftid from equation (26) that for
small values of q

—- — -. —.—— .— .— -—-. . ...— —
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.

a!. .–1 s%i(s)Ko(sll)a~ a ‘%++’0.) 1(32a)
?@ = & s2~(s)Kl(sq) = &
aq 2fl

where 70 is Euler’s constant. From equation (29), shilarly,

. .

(32b)

From these expressions, the inverse transform can“bewritten explicitly
on the surface of the body in the folXming form:

I
(33b)

--------- . . . .. ..... . . - --- — -—-— ——---——- ——-— . -— .. .—— —— .--— ---
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where 0(~) is an influence fuuction whose Laplace transform is

and where the usual

Wm A(E).

The evaluation fi(s)is given in the
appendix. It is sham that over the range of O ~ ~ ~ 2 the relation

L 1n(s) = * ‘SK1(S)-1
e-%=(s)

restrictions A(0) = Ar(0) =

of the inverse trausform of

(34)

O have now been placed

S2(~)=-+ln~+T(~) (35)

holds, where T(g) is a power series

‘m E4:gi2!!!issts

.

the

3.0 1

Q(F
20

15

10

5

00 4 .8 L2 16 2.0

for O< F<2.—- - —-

0.20

::
.80

1.00
1*2Q
1.40
1.60
1.80
1.95
2.00

0.033538
.o~02g
.113534
.162601
.220636
.291665
.383237
.512300
.732936

1.174207
00

0.122638 0.156176
.246073 .31~02
.403k32 .516966
.568452 .731053
.755683 .976319
.970676 1.262341

1.220196 1.603433
1.512@l 2.024721
1.85~48 2.590084
2.157066 3.331273
2.266000 m

Equations (33) now must be sub-
Sketch (i) stituted into eq~tion (31). The

resultant expression is the drag of
configuration. The linearity of the term &p/?l~ in the inte~and,

moreover, permits one to write drag in the form D = ~b + hi where
Dbb is the drag of the body as it exists alone in its own induced flow

field and hi is the drag of the body attributable to the induced

effects of the shrouding tribe.

.

—_____ _ .—. — — —. .—— ..-. .—
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Up to this point in the analysis no explicit use has be&n made of
the assumption that
tion of ~b le8ds

and Karpovich (ref.
base. If, however,
results the simpler

%b _-
qo

the body closesand, ir-fact, straightforward evalua-
to the expression given by Ward (ref. 4) and Franlsl

7) for open-ended bodies with finite slopes at the
the body closes or has z~o slope at the end, there
*ag fo- of von ~ (ref. 8).

%~A”(’)’’~A”(’l)~l’ - ‘11”1

(36)

The titerference drag is then

where @.#E is given by ,thelast two terms in the right mmber of equa-

tion (33b). Ehibstitutioninto the equation for the interference drag
yields /

so that the formula for the total wave drag for a closed body of arbitrary
shape becomes

J
(38a)

- -... .... . . ..— .— — —. —. ..—— - ——- -
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In terms of the
the drag in the

NACA TN 3fi8

physical variables, using equation (25), one may write
final form

z x-mZ
D

f[
—=
q.

St(x) S“(x- mZ)+ SW~(0)fl

ml

(S-2)+( .nt(x-ml-.l]~(~)d.=]~

m>l

where m = ~oh/Z . If the shrouding tube of the configuration

(38b)

is designed

for a fixed radius h, formulas (38) give the drag for a shrouded body of

revolution of arbitrary shape for Mach nunibers MO ~ ~ 1 + Z2/16h2. Ilhen
m= 1/2 the waves from the forwar& portion of the body are reflected onto
the rearward as in sketch (a). For m~ 1 there is no effect of the tube
and the formula for the drag is the same as that of the body without
shroud.

AS an example, consider the body of revoltii~ whose g~erat~g curve
is defined by

R(x) =% X(2-X) , Ogxgz

where to is the maximum thickness (see sketch (j)). Here

.

. .
-..

Sketch (j) -..

~oe
s(x)=— xqz -x)2

.’24.

(394

&&02
‘t(x)

I

=—x(2-x)(2-2x)24

~02 2- 6x2+ 6X2)

,4 “
s“(x) = —

&-tn(x)s +(2X-2)

with frontal area S~ = fio2/h. For m >1 the second formula in
equations (3@) yields..~~.

.“

(3!%)

-— .._.. - —.. - . . ..— —.. . .— —--. . .
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.

Integration of the first relat%on in
formulas (38b) for l/2~m~ 1 is
carried out numerically and the
results are shown in sketch (k).
For a fixed value of the ratio h/Z,
this sketch gives the drag of the
configuration as a function of

12

ck8
q

D

1

1

93h?.8.91b
m

Sketch (k)

Shrouded Bodies Having Zero Wave Drag

Ih general, the value found frm the drag formula (38) for a shrouded
body will be greater thsn zero. It is possible to obtain frmn this for-
mula, however, an integral equation whose solution will yield a class of
body shapes for which the wave drag is zero.1

Derivation of integral equation.- = the particular application to
be considered here, we take ~oh = 2/4.(m = 1/2) dnd as~e that A“(0)=O.
A further assumption to be made is that the body has fore-and-aft symmetry.
This implies that A(Lj)= A(4-~) and, since no discontinuities are
allowed in the slope of the meridian section, At(2) = O. Under these
conditions the first relation in equation (38a) becomes

(41)

A sufficient condition for the drag to vanish is that the expression
with the brackets be zero, resulting in the relation

(42a)

The solution of this integral equation for the function A(g) is required
in order to find the area distribution S(x) = Poh2A(~) of thebo~
whose drag is canceled by the shrouding tribe.

%hile this part of the analysis was being carried out, Graham,
Beane, and Lither (ref. 9) published a paper treating essentially the
same problem from a different point of view.

—

. ——.-—--- .—-——-—.— _____ _ _. _ .-—- _ . ._ —.. — ---- - —
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Equation (42a) can also be written

where

J
(43)

In dealing with this titegral equation it is advantageous to apply the
calculus of Laplace transform because the equation contains the convolu-
tion of A“ and ~.

Taking the Lsplace transform of both sides of relation (42b), one
obtains

E(s) = S%i(s)[l + Sfi(s)]“ (44a)

or

I+K=(s)
ii(s)= s%(s)

fie-Ii(s)

For a homogeneous equation of the type (42b) it
assume that the unlmown can be expressed in the

n~

is usually convenient to
form

A“(g) =J” 9’(*2)g(E- ,2)M2 (45)
o

where the functions g end 7 are to be determined. Eqyation (Mb) then
yields

&Kl(s)
E(s) = ~(s)g(s)

-xe-sI1(s)
(46)

Now the quantity
by simply assuming

in the denominator of this relation can be canceled

~(s) = fie-sI1(s) . (47a)

— —-— -—.——... . . — .—-— —— —.———— .—. .— .---- -.—-— —
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or

y(h) = 1-E2
Jzxz 13’

“05(2~2

= o, E2>2

1
so that equation (46) reduces to

(4P)

E(s) = ~(s)esKl(s) (48a)

or

J’
E 1+ ~=

E(E) =

o we+ El)
dE - E1)M1 (m)

From equations (45), (47b), (48b), snd the first
tions (43), there results the following integral
mining the function g:

relation in equa-
equation for deter-

(49)

After integration and some manipulation
homogeneous equation of the first khd

, relation (49) reduces to the

with unkrmm

G=(3=) = g(h) +/3(2- El)

and kernel

(50)

(51)

This expression obwbusl.y has at least the trivial solution G=(~l) ~ Oj
or

.—. - —— — . — ..——--— ——-. - .-
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13(G1) = - o<gl<2 (53)g(f2-El) s –

requiring sin@y that the function g in equation (45) be odd about

El = 1. For a function that satisfies this condition, it follows that
a formal solution of the integral equation (~) can be written as

or

J“
‘5

A’(g) = El(Z- EJg(E - E1)M1
o

~ order to avoid obtaining bodies with negative areas, however, the
function g satisfying relation (53) must be chosen so that

is greater than or equal to zero. These formulas determine the shape of
the shrouded body for the range O e ~ ~ 2, while the rear half of the
body is obtained by reflection abc& ~ = 2. There is of course an
infinitude of functions for which the relation (53) holds, so that equa-
tions (54) actually furnish an infinite class of body shapes whose drag
is canceled by a shrouding cylindrical shell. It will be shown later
that this function g can be related to the pressure coefficient on the
shroud.

The quantities defined by formulas (54) are continuous if g is
piecewise continuous. It is apparent from these equations that the
restriction A“(0) = A?(O) = A(0) = O is met, and it can be seen by use
of equation (53) that the requinxnent A’(2) = O is also satisfied.
Moreover, it can be shown that if A’ is required to vanish-at E = 2,
snd if g is restricted to be piecewise continuous, the solution
Gl(~=) s O used for equation (50) is the only one admissible here.

A simple function that satisfies the functional relation (53) is

(55)

Inserting this expression into the formula (54-c)yields, for 1~ ~ <2,

.— -.. . . .
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THEORETICAL WAVE DRAG OF SBROUDED

AIRFOILS AND BODIES

By Paul F. Byrd

Formulas for the wave drag of shrouded symmetrical.airfoils and
shrouded bodies of revolution of arbitrary shape are derived by means of
linearized theory. In the case of the airfoils the shroud consists of
flat plates, and for the bodies of revolution the shroud is a cylindrical
shell. The results obtained hold for a Mach number range dependent on
the geometry of the configuration. Expressions are also given for deter-
mining a class of body shapes for which the wave drag is theoretically
zero.

INTRODUCTION

A body mtig at supersonic speeds has a wave drag which can be cal-
culated either from integrations based upon the pressure at the surface
of the body or by means of a momentum balance over a control surface sur-
rounding the body. The control-surface approach shows more clearly that
the wave drag is related to the transport of momentum in the Mach waves
created by the body. This approach also suggests the scheme of reductig
or destroying the wave drag through the use of a shroud as first shown by
Ferrari (ref. 1). With.such a shroud the waves are caught and reflected
to the body surfaces where they may be absorbed without further reflec-
tion. From the standpoint of the pressure exerted on the body itself,
it follows that the reflected waves may strike the rear portion of the
body in such a way as to provide a buoyaucy to overcome the resistance
of the body alone. The detrimental.effect of the additional friction drag
due to a shroud is not ficluded in the present study.

The principal object of the present investigation is to derive for-
mulas for the wave drag of shrouded symmetrical airfoils and shrouded
bodies of revolution of arbitrary skpe. The airfoil is shrouded by flat

‘. plates and the body of revolution is shrouded by a cylindrical shell.
Although many configurations are possible, the analysis here considers
the particular arrangement wh=e the shroud extends at least far enough

: forward to catch the Mach wave emanating from the body nose, and far
enough rearward to cast Mach waves on the base of the body. As a special
application of the results obtained, a class of body shapes, similar to

. . ..- ----——. . .-.. = ——— — — - .— --- —— —- -
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those given by Busemamn (ref. 2) and Ferri”(ref. 3), are fouud for which
the wave drag is theoretically zero. t

For either the case of the airfoil or the body of revolution, the
analysis is based on the assumption of Mnearized theory end on opera-
tional methods using Laplace transforms. Ward (refs. 4 and 5) has shown
in considerable detail how operational calculus can be employed to treat
bodies of revolutim and quasi-cylindrical tubes. A similar approach will
be followed here, except that Heaviside notation is not used.

To the order of the analysis employed, disconttitities in the slope
of the airfoil are admitted, while for the body of revolution the gradient
of cross-sectional area and its derivative are assumed to undergo no
abrupt changes. In actual practice, disconttiuitiesproducing fixed com-
pression waves would certa~y upset the accuracy of the results even more
than for the airfoil or the body alone since the opposing surfaces offer
the possibility of shock-wave and boundary-layer interaction.

a.

A,B

Cp

D

f

F

SYMBOLS

speed of sound in free stream

cross-sectional area of body in

D
section drag coefficient,—

qo2

D
body drag coefficient,—

Qf

dimensionless

P- Po
pressure COeffiCieIltj—

qo

wave drag

F
function defined in equation (5), —

~oh

function deftiing upper surface of airfoil or
curve of the body of resolution

terms, ~
$oh2

generating

function satis~ng relation (53)

distance of shroud from x axis

—— .—.-
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.

10,I1,JO,

JIJ%)K1 1Bessel functions ”(ref.6)

z

m

M.

P

Po

q.

R

s(x)

Sf

to

U.

x

Y

xl “

$0

n

P

E

P.

9(E,?)

length of body, or chord length of airfoil

2$oh

L

Mach number in the free stresm

local pressure

pressure in free stresm

PO%2
free-stream dynsmic pressure, ~

radius of body

cross-sectional srea of body

frontal area of body

maximum thickness of body

free-stresm velocity

Cartesian coordinate in free-stresm direction

Cartesian coordinate, measuring vertical distance for airfoil
and radial distance for body

Bessel function (ref. 6)

dimensionless variable introduced in equation (4), ~

Mach angle, arc sin A
%

dtiensionless variable introduced in equatiou (4), ~
pou

“free-stresmdensity

perturbation velocity potential in dimensionless terms, ~
o

. . .. . ——. —. —-— ..-...-. ..— _ _ __ --- —— ----_—-—___ -
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@(x,y) perturbation velocity potential

(1

(-)

influence function deftied in

Laplace transform of function

lmrmMAmcAL SIYmmmT

I-V4 ~m- 1/4+

(t30h=l/4)

Sketch (a)

o/4<130h<l/2)

Sketch (b)

equation (35)

OF PROBIJW

NAcA ~ 31Z8

or
at

Consider a symmetrical airfoil
slender body of revolutim placed
zero angle of attack at Mach nuuiber

~ =Uo/~ >1, where a. is the
speed of sound in the free stream and
where Uo, the free-stream velocity,
is alined with the x axis. The y
axis measures vertical distance h
the case of the airfoil and radial
distance in the case of the body.
The nose of the body is at the origin
of the coordhate system.

In the configurations to be con-
sidered the airfoil is shrouded by
two flat plates and the body of revo-
lution is shroudedby a cylindrical L
tube. The shrouding plates (or tubes)
are placed so that the distance h
by which the shroud is removed from the
X tiS iS such that 7/k<~oh~ 2/2,

wh~e j30= cot v =_=dl
is the body length. The shroud is
required to extend at least from
x=~ohto x=z-~oh,butit would
produce no additional effects on the
body if it were longer. Sketches (a),
(b), and (c) show the geometry of the
configuration with either the airfoil
or body of revolution ti three typi-
cal arrangements. If ~oh = 1/4, all
the Mach waves fran the forward por-
tion of the body sre reflected onto
the rearward, and when ~oh~Z/2

there is no effect of the shroud since
the waves are reflected behind the
body.

..

(&hW2)

Sketch (c)

--
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The upper surfa@e (or generating curve) of
assumed given by the function

Y = F(x)

It will also be assumed that the bodv closes at

5

the airfoil or body is

(1)

both ends (i.e., that
F(0) = F(l) = O) and that the thickness-length ratio of the body is suf-
ficiently small relative to the Mach angle v that linearized theory
applies. As a result, the perturbation velocity potential Q(x,y)
satisfies the partial differential equation

Za% a%Po~-— vh~ o
ti2-7~=

together with the boundary conditions

()f a4 .Fvg

‘o & y=vF ax’
o~x<l

()

1*—— =0,
Uo ~y=h

~oh~x~t-f30h
1

(2)

(3)

where the parameter v equals O and 1, respectively, for the airfoil
and body of revolution. One then has the problem of finding a solution
of ~, and from this to determine the drag of the configuration.

If dimensionless variables ~, q, q defined by the relations

are now introduced, the expression
for the body surface, as given by
equation (l), becomes

with m= ~oh/Z, and sketch (b)

becomes sketch (d). The differen-
tial equation is then

dE,n) = @(x,y)/Uoh (4)

I,/ /“ “\.//’1, ,~’
,

.

&/ ,/
7 x

q“y’ x,,, “..,
\

,//
f

‘\ 7)”&f(13
/ ,/ ‘\ ‘

/’ / N. \/

o- -t
‘. \ i ,,~’&z%-
x N ,/’ ,,<‘\\ ‘\

\ ,/ ,/
‘\\
‘\\, “%’” ,./”

\ ,/’\. -,”

. .- . . —--- - ——.—. ..— —

(1/2em<l)

Sketch (d)

——. — ——--—
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(6)

(7)

Operational methods based upon the Laplace transform are suited for
treating the basic clifferential equation (6) for either the airfoil or
the body of revolution. Denoting the Laplace transform of a function

and
the

g(s;q)= /
do

employing this transformation
differential equation

for relations

.

together with the boundary conditions

. . —

(8)

(6) and (7), one obtains ~

and

(9)

(lOa)

(lob)

Once @ has been det~ed frrnnequation (9), the drag of the shrouded
figures can be calculated. Jn order to carry out the calculations, it is
convenient to treat the airfoil and body-of-revolution problems separately.
The analysis for the airfoil offers little in the way of novelty but will
be given first since it illustrates the frsmework of the methods employed.

.. —.—— .-— -.-—— .. .. . . .
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AIRFOIL WITH @IROUDING PLATES

7

Evaluation of Wave Drag

The solution of equation (9) for the case of
when V = o) is

@(s;Il)=dS)e-s~ +l)(s)esn

the airfoil (i.e.,

~ (U)

Since vertical symmetry etists in the flow field, attention can be limited
to the upper half of the figure. Over the forward part of the airfoil the
downstream inclination of the outgoing waves tidicates, furthermore, that
the second term in the armwer (11) can be deleted. Imposing the boundary
condition (lOa), one then has

t

-sa(s)e-s~1 =s? ,
~=o

a(s)=-F

and it follows that
relations

or, in terms of the

Q(x,y) = -

where m = 2j30h/1,

the perturbation velocity potential satisfies the

@(s;q) = - ?e-sV

1dE,l’1) = - f(E - n) .

physical variables,

(122)

l/2<m~l.

The flow around the forward portion of the airfoil is given by equa-
tions (12); in order to predict the flow around the rearward portion.
however, it is necessary to determine the nature of the inco&g wav&
from the plate. The velocity potential of these incoming waves can be
obtained from the second terniin the right member of equation (lI).
Boundary condition (lob) requires that vertical velocitybe zero at

? = 1. From equations (12) and (11), therefore, one has

sb(s)esq]q=l= -s?e-sq]q==; b(s)=- ?e-2s

—-..- --- -.—— .— —— . -—— .— —-
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Hence the potential cpa of the inccming waves is determined by

- -s(2-q)@2(s;q) = - fe

4A = - dE +T - @ 1

(13)

and the potential in the region of the plate is

v= -f(g-q)-f(g+ q-2)

If the potertial q aver the rear of the airfoil is written in the
fOrm

and ~~ is assumed expressible by terms of the form a~(s)e‘s~, the
boundary condition (lOa) melds

Thus aa(s) = -

- -fhq=o -- sfe 1sa3(s)e-s~~=o = s?

Te-2s - ?, so that

The potential over the rear of the airfoil is then given as follows:

T(E)~)= -f(E-n- 2)- f(E+n-2)-f(E -q) (14’2)

or finally

@(x,y)= -~[F(x-poy -mZ)+F&+~&-mZ) +F(x-~~)] , mZ ~x-~~< Z

(lhb)

It remains now to find the expression for wave drag on the surface.
h the physical variables, the total wave drag is

-. ----- . ..— .—. .— .—z. —— .-.. —
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where q. = poUo2/2 is the dynamic pressure in the free stream of density

P(-J“
the

and

With the substitution,

pressure coefficient on

=2 F1(x) ,
$Po. ,

from thin-airfoil theory,

the airfoil surface is

Cp = - (2/uo)(a@/ax),

%? =~[F’ (x) +2F’(x -ml)] , ml<x

(1/2<m

J

the drag, e~ressed in coefficient form, can be written as

J’42
z

%=~mz [F’(x)+F’(x-mZ)]2dx+~
J

1

[F’(x)]2dx , l/2~m~ 1

0 (l-m)Z

Jm>l

(16)

If the reflecting plates of the configurationare designed for a fixed
height h, formulas (16) give the drag coefficient of a shrouded airfoil

of arbitrary shape for Mach numbers ~ ~ 1 + Z2/16h2. when
@oh = 1/4 (m= 1/2), the waves we reflected from the forward portim

of the airfoil onto the rearward as in sketch (a), and for m > 1 the
reflected waves do not intersect the airfoil. Formulas (16) thus yield
results for an airfoil with or without shroud.

Consider, as a simple exsmple, the shrouded biconvex airfoil section
whose upper surface is defined by

2to
F(x) =~x(2 -x), ogx~2 (17)

where to is the maximum thickness of the airfoil. The drag coefficient,
given by fomulas (16), iS then

.- - . . .——. ——.— . —. ——.— — .—. ———— -- —.
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()~ to=
cd. — —

3$0 z ‘

{J.JJ
m

Sketch (e)

“~
(18)

m>l

with the parameter m = 2$oh/1. It

is seen in sketch (e) that for this
special case, the value of ~ocd for

l/2~m<l is always less than its
value for m ~ 1, end that a relative
minimum occurs at m = l/&. If the
ratio- h/Z is fixed, formulas (18)
give the drag of the shrouded atifoil
as afuncti(m of f30for PO ~ Z/4h.

Shrouded Airfoils Ha- Zero Wave Drag “

Deterndnation of shape.- Although formula (16) for the drag coef-
ficient will in general be greater than zero, there exist classes of
airfoil shapes for which the drag,is theoretically zero. Since the two
integrals in the first expression = equations (16) can never be negative,
the necessary and sufficient condition that the drag vanish is that

F?(x) =- Ft(x-m2) , mz<x~l

F?(x) =0 , (1-m) t~x~mZ
1

After integration, these relatimm become

~F(mZ) -F(x-m2) =F(x) -~F(m7) , m2~x<Z

\
F(x) =F(mZ) , (1-m) l~x<mt

J

Thus the airfoil can be drawn in an arbitrary manner from x = mz
x= Z and the forward portion of the airfoil shape in the titerval
O~x~(l-m)Z isdet ~ed; the portion in the interval

(19a)

(lgb)

to

,.
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(1-m) 2<xgmZ is
flat and eaual to . I
F(ml). Sl&ch (f) ~1
shows the geometrical I
construction of the
profile. The upper
half of such an air-
foil is equivalent to
the lower wing of the
linearized version of
a Busemann biplane
arrangement, while the
lower half is the upper
wing.

U.

qkfiedarbitrdly

-------------------
I

0 l-ml ml 1
p-x-ml+

Sketch (f)

For the special case when m = 1/2, as in sketch (a),
can be written in the form

‘(x)-*F(:)=*F($-F(X-2)

If, morewer, the airfoil is assumed to be
F(x) =’(2 - x) and equation (19c) becomes

z/25 x”51

symmetrical fore

\

equations (l%)

‘(x)-*F(ii)=*F(ii)-F(+-x)~0sxsz’2

(19C)

and aft,

(lgd)

In this event the forward half of the airfoil has odd symmetry about the
ordinate of the quarter-chord position and, similarly, the resr half has
odd symmetry about the three-qusrter chord position. It iS dSO found
that the pressure distribution on the airfoil has fore-and-aft symmetry.

Drag for off-desi~ condition.- A shrouded airfoil whose geometry
satisfies relation (19a), however, will only have zero drag for some
particular value of the parameter m, say ~. If such
moving so that the parameter m is different frm ~,
for the drag coefficient become

.

cd =

cd = J’
1

4 [F’(x)]=dx ,
Go

1

11
m>lJ

(20)

... . - .-—.- -.. —.. — — —— .. . .
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As an example, let the wper

?I

surface of the airfoil (shown iu
sketch (g)) be defined by

●

‘F--XAF(X)=*X(Z-X)’0“:2’2
I

Sketch (g) (a)

If the desi~ of the configurationis suchthat ~h = 2/2 (i.e.,

%)= 1/2), relation (19a) is

t/2~ f?poh~ Z, however, the
frcm equation (20), by

()16 to 2cd.—
3% ~

(-

()~ to’
cd=——

3130 z ‘
6r

satisfied so that there is no drag. When,

drag coefficient for the airfoil is given,

4ms +

Sketch (h)

BODY OF REVOLUTION

Evaluation

6m’-l), l/2~m~l

1

(22)

m>l

Aplot of ~oc~(to/Z)2 against m
is shown in sketch (h) for values of
m greater than 1/2. Below m = 1/2
the calculations become more involved
but the ssme general method is
applicable.

WITH SHROUDING

of Wave Drag

The soltiion of equation (9) for the case of
(i.e., when v = 1) is

the body of revolution

ljj(s;q)= a(s)&(s~) +b(s)Io(sq) . (23)

where Watson’s notation (ref. 6) for the Bessel functions ~ and 10 iS
used. Over the forward portion of the body the wave system is outgoing
and the solution can be formulated from the first term in the right

. . ..— —.—.——.-—— . .__-_.—_ ..— _______ ..



NACA TN 3718 13

member of equation (23). In order to impose the boundary condition (lOa),
one employs the relation

the last expression holding by virtue of the fact that q is small on
the body surface. The boundary condition then

M!?).a(s) = - ~

yields, for f(0) = 0,

(24)

where the quantity A is

(25)

S(x) being the cross-sectional area of the body. The solution over the
forward portion of the body is thus

(j5(s;q)= -&3z(s)KJsq) . (26)

From equation (26) and the boundary ccmdition (lob), the potential
92 of the incondng waves from the shrouding tube canbe calculated. If
the Laplace transform of 92 is assumed expressible in the form

02(W) =b(s)Io(sq) , &

h
= ski=

the boundary condition at q = lyields

sb(s)I=(s) = -
s2~(s)K=(s)

2fi

Thus @2 is given as follows:

8A(s)K=(s)Io(sq);
q12(s;q)= -

2fiIl(s)

; b(s) = -
s~(s)K=(s)

.
2YCI=(S)

~= s2x(s)Kl(El)Il(q)

aq - 2TrIJs)

(27)

.

.— <.. ..—— —.— — ——.. . — — ~- -—— ————-–
——. .—..
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Let

Q(EJn) =
terms of

NACA TN 3TL8

the potential q over the rear of the body be writtm as

%&l) + %(EYn) where & is assumed to be given by the

the form a~(s)~(sq). In the previous case of the airfoil,

the normal gradient of CP2 at the airfoil surface was of the same order
as the imposed boundary condition and it was necessary to take proper
regard of Q= when-equation (lOa) was satisfied. lh the present case

the normal gradient of q= is of higher order (at the body surface) in

compwison with the contribution of

satisfied within the accuracy of the

ag(s) = - & 81(8) ,

q~, and the boundary condition is
theory by the relation

A(g) = Ycpof2(g) (28)

The solution over the rear of the body is therefore

J(s)K=(s)Io(sq) sx(s)~(sll)
@=- (29)

2YrI=(S) - 2Z ‘

In terms of the physical variables, the drag D of the configura-
tion can be written as an integral of pressure over the surface of the
body:

~={(y~m,x, gdx (30) ‘

Since for slender bodies of revolution the pressure-velocity relation
becomes

P
2

()

-Pcl= 2 a4 1 *—.
qo -~=-uoa ay

it follows that the drag titegral
variables, .

@m

J’[
~=j30h2 -

0

isj in terms of the dimensionless

(31)

where the Laplace transforms of q are given by equation (26) for
OS ~ ~2 andby equation (a) for 2~ ~ <2/m~4. Proceeding to the
evaluation of the drag integral, we ftid from equation (26) that for
small values of q

—- — -. —.—— .— .— -—-. . ...— —
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..

.

a!. .–1 s%i(s)Ko(sll)a~ a ‘%++’0.) 1(32a)
?@ = & s2~(s)Kl(sq) = &
aq 2fl

where 70 is Euler’s constant. From equation (29), shilarly,

. .

(32b)

From these expressions, the inverse transform can“bewritten explicitly
on the surface of the body in the fo~owing form:

I
(33b)

--------- . . . .. ..... . . - --- — -—-— ——---——- ——-— . -— .. .—— —— .--— ---
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where 0(~) is an influence fuuction whose Laplace transform is

and where the usual

Wm A(E).

The evaluation fi(s)is given in the
appendix. It is sham that over the range of O ~ ~ ~ 2 the relation

L 1
n(s) = * ‘SK1(S) -1

e-%=(s)

restrictions A(0) = Ar(0) =

of the inverse trausform of

(34)

O have now been placed

S2(~)=-:ln~+T(~) (35)

holds, where T(g) is a power series

‘m E4:gi2!!!issts

.

the

3.0 1

Q(F
20

El

10

5

00 4 .8 L2 16 2.0

for O< F<2.—- - —-

0.20

::
.80

1.00
1*2Q
1.40
1.60
1.80
1.95
2.00

0.033538
.o-po2g
.113534
.162601
.220636
.291665
.383237
.512300
.732936

1.174207
00

0.122638 0.156176
.246073 .317102
.h03k32 .516966
.568452 .731053
.755683 .976319
.970676 1.262341

1.220196 1.603433
1.512@l 2.024721
1.85TM8 2.590084
2.157066 3.331273
2.266000 m

Equations (33) now must be sub-
Sketch (i) stituted into eq~tion (31). The

resultant expression is the drag of
configuration. The linearity of the term &p/?l~ in the inte~and,

moreover, permits one to write drag in the form D = ~b + hi where
Dbb is the drag of the body as it exists alone in its own induced flow

field and hi is the drag of the body attributable to the induced

effects of the shrouding tribe.

.

—_____ _ .—. — — —. .—— ..-. .—
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Up to this point in the analysis no explicit use has be&n made of
the assumption that
tion of ~b le8ds

and Karpovich (ref.
base. If, however,
results the simpler

%b _-
qo

the body closesand, ir-fact, straightforward evalua-
to the expression given by Ward (ref. 4) and Franlsl

7) for open-ended bodies with finite slopes at the
the body closes or has z~o slope at the end, there
mag fo- of von ~ (ref. 8).

%~A”(’)’’~A”(’l)~l’ - ‘11”1

(36)

The titerference drag is then

where @.#E is given by ,thelast two terms in the right mmber of equa-

tion (33b). Substitution into the equation for the interference drag
yields /

so that the formula for the total wave drag for a closed body of arbitrary
shape becomes

J
(38a)

- -... .... . . ..— .— — —. —. ..—— - ——- -
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In terms of the
the drag in the

NACA TN 31h8

physical variables, using equation (25), one may write
final form

z x-mZ
D

f[
—=
q.

St(x) S“(x- mZ)+ SW~(0)fl

ml

(S-2)+( .nt(x-ml-.l]~(~)d.=]~

m>l

where m = ~oh/Z . If the shrouding tube of the configuration

(38b)

is designed

for a fixed radius h, formulas (38) give the drag for a shrouded body of

revolution of arbitrary shape for Mach nunibers MO ~ ~ 1 + Z2/16h2. When
m= 1/2 the waves from the forwar& portion of the body are reflected onto
the rearward as in sketch (a). For m~ 1 there is no effect of the tube
and the formula for the drag is the same as that of the body without
shroud.

AS an example, consider the body of revoltii~ whose g~erat~g curve
is defined by

R(x) =% X(2-X) , Ogxgz

where to is the maximum thickness (see sketch (j)). Here

.

. .
-..

Sketch (j) -..

~oe
s(x)=— xqz -x)2

.’24.

(394

&&02
‘t (x)

I

=—x(2-x)(2-2x)24

~02 2- (5x2+6X2)

,4 “
s“(x) = —

&-tn(x)s +(2X-2)

with frontal area S~ = fio2/h. For m >1 the second formula in
equations (3@) yields..~~.

.“

(3!%)

-— .._.. - —.. - . . ..— —.. . .— —--. . .
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.

Integrationof the firstrelat%onin
formulas(38b) for l/2~m~ 1 is
carried out numerically and the
results are shown in sketch (k).
For a fixed value of the ratio h/Z,
this sketch gives the drag of the
configuration as a function of

12

G18
q

D

1

1

93 Ai?.8.91b
m

Sketch (k)

Shrouded Bodies Having Zero Wave Drag

Ih general, the value found frm the drag formula (38) for a shrouded
body will be greater thsn zero. It is possible to obtain frmn this for-
mula, however, an integral equation whose solution will yield a class of
body shapes for which the wave drag is zero.1

Derivation of integral equation.- = the particular application to
be considered here, we take ~oh = 2/4.(m = 1/2) dnd as~e that A“(0)=O.
A further assumption to be made is that the body has fore-and-aft symmetry.
This implies that A(Lj)= A(4-~) and, since no discontinuities are
allowed in the slope of the meridian section, At(2) = O. Under these
conditions the first relation in equation (38a) becomes

(41)

A sufficient condition for the drag to vanish is that the expression
with the brackets be zero, resulting in the relation

(42a)

The solution of this integral equation for the function A(g) is required
in order to find the area distribution S(x) = Poh2A(~) of thebo~
whose drag is canceled by the shrouding tribe.

%hile this part of the analysis was being carried out, Graham,
Beane, and Lither (ref. 9) published a paper treating essentially the
same problem from a different point of view.

—

. ——.-—--- .—-——-—.— _____ _ _. _ .-—- _ . ._ —.. — ---- - —
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Solution of integral equation.-

NACA ~ 3718

Equation (42a) can also be written

where

J
(43)

In dealing with this titegral equation it is advantageous to apply the
calculus of Laplace transform because the equation contains the convolu-
tion of A“ and y.

Takingthe Lsplace transform of both sides of relation (42b), one
obtains

E(s) = S%i(s)[l + Sfi(s)]“ (44a)

or

I+K=(s)
ii(s)= s%(s)

fie-Ii(s)

For a homogeneous equation of the type (42b) it
assume that the unlmown can be expressed in the

n~

is usually convenient to
form

A“(g) =J” 9’(*2)g(E- ,2)M2 (45)
o

where the functions g end 7 are to be determined. Eqyation (Mb) then
yields

&Kl(s)
E(s) = ~(s)g(s)

-xe-sI1(s)
(46)

Now the quantity
by simply assuming

in the denominatorof this relationcanbe canceled

~(s) = fie-sI1(s) . (47a)

— —-— -—.——... . . — .—-— —— —.———— .—. .— .---- -.—-— —
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or

y(h) = 1-E2
Jzxz 13’

“05(2~2

= o, E2>2

1
so that equation (46) reduces to

(4P)

E(s) = ~(s)esKl(s) (48a)

or

J’
E 1+ ~=

E(E) =
o We+ El)

dE - E1)M1 (m)

From equations (45), (47b), (48b), snd the first
tions (43), there results the following integral
mining the function g:

relation in equa-
equation for deter-

(49)

After integration and some manipulation
homogeneous equation of the first khd

, relation (49) reduces to the

with unkrmm

G=(3=) = g(h) +/3(2-El)

and kernel

(50)

(51)

This expression obtiousl.yhas at least the trivial solution G=(~l) ~ 0,
or

.—. - —— — . — ..——--— ——-. - .-
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13(G1) = - o<gl<2 (53)g(f2-El) s –

requiring sin@y that the function g in equation (45) be odd about

El = 1. For a function that satisfies this condition, it follows that
a formal solution of the integral equation (~) can be written as

or

J“
‘5

At(g)= El(Z- EJg(E - El)ua
o

(54b)

~ order to avoid obtaining bodies with negative areas, however, the
function g satisfying relation (53) must be chosen so that

is greater than or equal to zero. These formulas determine the shape of
the shrouded body for the range O e ~ ~ 2, while the rear half of the
body is obtained by reflection abc& ~ = 2. There is of course an
infinitude of functions for which the relation (53) holds, so that equa-
tions (54) actually furnish an infinite class of body shapes whose drag
is canceled by a shrouding cylindrical shell. It will be shown later
that this function g can be related to the pressure coefficient on the
shroud.

The quantities defined by formulas (54) are continuous if g is
piecewise continuous. It is apparent from these equations that the
restriction A“(0) = A?(O) = A(0) = O is met, and it can be seen by use
of equation (53) that the requinxnent A’(2) = O is also satisfied.
Moreover, it can be shown that if A’ is required to vanish-at E = 2,
snd if g is restricted to be piecewise continuous, the solution
Gl(~=) s O used for equation (50) is the only one admissible here.

A simple function that satisfies the functional relation (53) is

(55)

Inserting this expression into the formula (54-c)yields, for 1~ ~ <2,

.— -.. . . .
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.

A(E) =%
[
3(ltE2-8E+q)CGS-1(1- E)+ (E-1)(232- 4E+15) ~ +

48(2- ~)cos-1(2- ~)- i6(~2- 4~+6) ~(g - 1)(3 - ~)
1

(%a)

[

/’

1

A(g) = & 3(4~2-8 E+5)COS-1(1- E)+( E- 1)(252- 4E +15) ~

(56b)

A plot of the coordinatesof the body
is shown in sketch (7) for the spe-
cial case when the maximum thickness
ratio is 0.1 and the Mach number is J /’-”..

A.

A siqler example
taking

L?(EJ =M1- El) Y

(57)
Sketch (Z)

Substitution into formula (54c) leads, for O ~ ~ ~2, to

1
A(5) = & [3(- 4E2+16E - 13)cos-1(1- E)+ (- 2~s+14~2- 35~+39) ~

(58)

the same as that obtained by Grahsm, Beane, and Lither “
quantity A in equation (58) is chosen so that the

a result which is
(ref. 9). If the
body considered in reference 9 has the ssme‘~olumeas that of the previous
exemple, the former body has a maximum cross-sectional area 0.94 times as
great.

Determination of body shape when a portion of it is specified.- For
a function satist’@ng relation (53), it is seen that formulas (54) yield
a.class of bodies having zero drag. Instead of prescribing the functim
g and then calculating A, however, it is possible to find the entire
shape of the body when only a portion of it is given. This is accomplished
by starting with equation (Wa) .

Equation (@a) can be put in an improved form by translating the
axes so that the origin is at the body midpoint. To this end, set

----- . ..— —.- ...— ..— —— —. ____ .— ___ _ .—__ _ _ _ _ _____. . .



24 I’?ACATN 3~8

Ej=cr+2 , ig==Cf=+2

1 (59)
A(E)=A(4- ~)=A(2+a) =A(2- u) =B(u) =B(-a)

I
As shown in sketch (m) equation (@a)

ad can then be interpreted as an inte-
~To beddem”ned gral equation in which B(a) is

— --d tiecified in the range -2 ~ u ~ -1 or~
-2 -1 0 I ~ 1 ~ a ~ 2, and it is required to find

u B in the range O
the e~ression

Sketch (m)

(60)

where p(a) is Ima,m and is given by

with ~(c) = dQ/da. A final change of variables (a== T) reduces equ-
tion (60) to the form

The singular integral
Since

(62)

equation (62) is a familiar one in aerodynamics.

its inversion is

or

1
dTl

— .- -—— ——-— — -.
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*

B“(u)=
*[’’(’’+T2V(::P”= I=I “3)

Equation (63) cm be integrated with respect to U; by Wter-
changing the order of integration in the last term and imposing the con-
dition B~(0) = 0, we find

Integrating once againwith respect to a fihally yields the expression

dT2

(65)

for the value of B in the interval O < u <1 when it is prescribed for
l~u~2.

As sn example, specify B“(a) to be

(66)‘!t(~)=x -.

in the interval 1 ~ u ~ 2 end find its value for the range O ~ a ~ 1.
It can be shown that

,. so that, from

(67)

(68)

-...—— .... . . .. . .. . .. ——. - __ _ _ ___ —— ——.—— —.. - . - —



26 WA TN 3718

Ehibstitutionof this quantity into the inversion formula (63) leads,
after integration, to the result

[t

‘&TJ2 + (JJ(l-al=)
2
T2&(2-T2)(T#-1)

“’(”)= .& o J’
Ml+ 1dT2U2- 6=2 ~2

1 - T22

(69)

or finally

Bn(tr)=A--2A_ , oga~l (70a)

Ilrtegrationof this then gives

B:(a) =2
[ 1
(a- 1) m- Cos-l(a- 1)- 2U-+2 CoS-la (70b)

or

B(a)=~
[
(U2-2U+3) ~~- 2(cr2+2) ~+6u COS-%J+

.
1

1
3(1 - a)cos-qrJ-1) , ogu~l (70C).

Sketch (n) shows a plot of the coortiates of the body when the maximum
thicknessratiois O.1 and ~ = ~.

.3
,,,- ..

F
,*’ ‘L

‘.
,.’ ~.

,/ \
,,’ ‘.,

—

o* X/l /... ,.,
‘\ /
... /’

‘x ,.-
... /—.. -% ,,~

-3

Sketch (n)

_uic3A.
-2 --7 Ocl 2

f.

Sketch (o)

If the function B(a) is specified in the range -1 ~ a ~ O or

O ~ a ~ 1, equation (&a) may also be employed to find B(a) for
-2~a~-lorl~u~2. -(See sketch (o).) In this case we may write

the relation (@a) in the form

.- — . ..—.— .—-— -.-——— .-— —-..——. — —
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.

(m
where the last term on the left, as well as the term on the right is
unkxwm. Applying the inversion formula for the airfoil equation under
the condition that B“(2) = O, yields the equation

J’
2

G(u)= B“(cr)+ H(a,c2)B’’(u2)du2

1

where the known functions G and H are given .by

(72)

(73)

Relation (72) is a Fredholm integral equation of the second kind and can
be treated by well-known methods (see, e.g., ref. 10), although an tiver-
sion formula for the e uation cannot, in general, be written in closed
form as was done (eq. ? ))62 for the previous case.

Drag for off-desi@ condition.- If the body geanetry satisfies the

[
integral equation @), the drag will be zero only at the design con-
dition p. = Z/4h m = 1/2). The value of the drag of such a body for

1/2 < m <1, however, can be calculated by means of equation (38a) and
will lie between zero and that for the body alone (m ~ 1). Substitution
from equation (42a) into formula (38b) gives the equation

—.. —.—-... . -- — ——— —-. . .. _ .. .— —— —.. ..
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(74)

by
Consider, as an exsmple, the shrouded body whose gemnetry is defined

equation (58), that is,

6

&’I

“’(’)= S“(2-x) ,

&5-
m

Sketch (p)

For m = 1/2 the configuration has
zero drag, since A“ or S“ is a
solution of the integral equation (&a) .
~tegration of equation (74) is csrried
out for this particular case for
1/2 < m and the results are shown in
sketch (p). Calculations for m < 1/2
become exceedingly involved and cannot
be obtained frm the analysis, although
the same general method is applicable.

Pressure Distribution

Pressure coefficient of shroudedbo dy of arbitrary shape.- It is of
interest to determine the pressure distribution of a body of revolution
shrouded by a cylindrical shell. From equations (33), the pressure
coefficient

. .. . . . . ——- —. —..—— . —— —. —...-—— -— — -—.-— ---—.
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on the same body in the range O < ~ ~ 2 is given by

In terms of the physical vsriables, using equation (~), we write these
formulas in the final form ~

Y-($Y’$&(Sl:i(Xl)ln(x- xJdxl ; O~x~mZ

(76a)

ly-(gy++$~ s??’(xJln(x - xJdx~ + S“(0)S2
()
~-2 +

(76b)

In the interval O ~ x ~ ml the pressure coefficient is the ssme as that
of the body without shroud, while for mz ~ x ~ 7 it is affected by the
last three terms in formula (76b). One sees from equations (76a) and
(76b) that at x = ml the coefficient has a jump equal to S“(0), which
means that the pressure is not conttiuous unless the body has a cusped
nose.

For the particular exsmple of the body whose generating curve is the
parabolic arc “

one obtains for the

R(x)=% X(z-X) > o~x~2

forward ~ortion of the body

(77)

.. .. . .—.. .. . ..- .—— —. —— .—. . -.Z . —.— —-. .-— —
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—.

(784
and for the rearwara portion

2
Cp

()[
=4* -1+16 ;-22

( )
~+% l+6m+6m2+ 6~-6$-12~m -
12

&lZ)-m

12fl
M

2

0 :-a-’-%?]”] ; “s’s2
(7@)

30- 1!
j!

25- 11I

20-

I

Cp

.10“

05-

-05- surface

-.10” ~

A sketch of the body of revolution
hav%lgmaximumthicknessratioequal
to O.1 and a plot of the corresponding
pressure distribution at Mach number

& are shown in sketch (q) for
m = 1/2, and also for m > 1 (when the
body is without shroud). ‘The drag
of the shrouded body is shown in
sketch (k). .

Pressure coefficient of zero-

~“- When the body geometry
is such that relation (42a) for zero
drag holds,formula(75b) for the
pressure coefficient cm the rearward
yorticm of the body (i.e., in the
interval 2 ~ ~ ~ 4) reduces to

Sketch (q)

so that fortO ~ x ~ 1/2

s“(x) ~
%=-~

----

~-(=Y+*%fi’’(x.)~(’-’l)~.‘7’s)

——-.— ———-....—..—-----
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.

.

Since the body here is symmetrical fore and aft, that is, since “
s“(x) = S’r(l-x), it can be seen from equations (79a) and (79b) that
the pressure distribution on the body also has fore-and-aft symmetry.

It remains to relate the pressure coefficient on the shroud to the
function g h formulas (54). From the first relation in equation (32b)

~= - a [I,(s)&(sq)+ KID.]

so that m the shroud (i.e., at q = 1)

- Q!ii=A%!4_%= PO bg pofir~(s)
[Il(s)&(s)+ K=(s’)IO(s)]

Taking the transform of

or

id.(s)

= j30fiIl(s)

equation (54a), one obtatis

s~?(s)= ne-sI1(s)E(s)

‘(S)=*
Thus from equations (8o) and (81)

so that the pressure coefficimt on the shroud

13(E)=130~*(l+E)

(80)

(81)

(82)

is related to g by

(83a)

.
— ——— ..— -z .— -. .— —._ ._ .._
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C@+ E)=CJ3 - E)

(83b)

(83c)

that is, that the pressure distribution on the shroud has fore-and-aft
symmetry about the body midpoint ~ = 2.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif, Apr. 6, 1956

—----- .—. —.-— —— .. . . . .—. . --- .—. —.—-
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APPENDIX A

EVALUATION OF AN INVERSE

The Laplace transform of the influence functionl Q was expressed
in equation (34) by

n(s)=:

.

,

In this section, representations

Q(g) = liJn
w +00

[ 1

esKl(s) - ~

fie-sI=(s)
(Al)

of the inverse transform

e+iw

are given in two forms. The first form, which involves a series of
Bessel functions, enables one to find the nature of the singularity.
The other form gives the singularity explicity and is more convenient
for computational purposes, as in the numerical integration of equa-
tions (38), (63), and (76).

Evaluation of the line integral (A2)can
be obtainedin the usualway by transforming
the path of integrationintoa closedcontour
and applyingthe calculusof residues. ‘l’he
titegrandpossessesa simplepole at the ‘
originand an infinitenuuiberof poles (roots
of 11) alongthe imagimry axis. The inte-
grandalso has a branchpointat z = O due
to Kl, so a closed circuit is chosen as
indicated in sketch (r). Sjnce for anuuiber
CrD>o

-fi

iy

D x

H

Sketch (r)

of the circle c1 of radius RThe integral taken over the MD and
can be sham to go to zero as R +CO. According to Cauchyts residue
theorem, the evaluation of equation (A2) is then

%M.s influence function was derived snd first investigated in some”
unpublished work of Max. A. Heaslet of Ames Aeronautical Laboratory.

.-. . --- .. -.._ ._ -.-— - --. — .— .. .— _ .— ___ _ . —.——. ——. . ..—.
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(A4)

where

(A5)
.

and rm is the residue of ez%(z) at z = +i~, the q~tity Am being
the mth root of J=(A) = O. We now consider the two terms on the right
of equation (A4) separately.

Since

,.

a particular meniber
given by

Use of relations

& [ZI1(Z)]=ZIO(Z)

rm under the summation sign in equation (A4) is

-i~m(~+2)Kl(-ib)

[

i~m(~+=)K=(i~) -e
e

1
(

Io(i~) 10(-i&)
I

K(*i&)=*$Y1(&) ; Io(*i&) = Jo(k)

then yields the result

b’=~;::)cos(g+’)im

(A6)

(A7)

(M)

for the total contribution of the residues.

The last term of equation (A4), which represents the contribution
resulttig from integration over the path DEFG in sketch (r), may be
written frmn equation (A5) in the form ‘

●

✎ ✎

— — ————-.—. .-.--—---— - —-— ..
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If the relation

,’ Kl(t#i) SK=(t)+ iti— —_
Il(te*i) Ii(t)

(no)

is employed, equation (A9) then gives

(All)

or

Q(E)= ;
[ 1
Yc+@+2)2+ln 2 (E+2) (A12)

Finally, using relation (A4), (A8), and (AI-2),we have the equation

[:

YJlgJNE)=* fi — cos(~+2)&-Yc -~+(E+2)2
~== We(h) 1

-b 2(Ej+2) (A13)

for the inversetransformof the influencefunctio~.

The nature of the singularities in this expression maybe found
heuristically as follows. Except for the last term, which has a logs-
rithmic infinity at ~ = -2, the only possible shgularities in equa-
tion (A13) come from the series involving Bessel functions. Since the
singularities due to this series are not affected by omitting the first
N terms, we mibstitute the asymptotic expansions (ref~ 6)

_--— — -. ...- -—— -—— .—— ..— ——- --—-- -
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%=(.+*).- +l&(m+iy+*● ●

Jo(Am) =J~[~.(h-:)+&.i.(h-$)+. ..]

Y=(h) =E[-cos(k$+ais4L4+0● “1

so that

w

=- 1
m=ll

when N is sufficiently large.

A. [-’+”(iQ!]

COS(~+ 2)X.

cos[(m+~)(~+2)fi] . ~ s~(m+$fi,

1m+- 1
4.

m+-
m=N 4

(A15)

Now

which near ~ . *2 be~ves me ~(2+ ~)/(2- ~). one

tion ~A13) Wd the function Q has OX a lo-itmc

E 2==

EVALUATION al? Q(g) BY AID!ERNATEMETHOD

The ~ression (A13) for the influence function Q

4

can see fr(nnequa-
singularity at

is unsuitable
for numerical work, so that it is desirable to have an equation which is
more convenient and which also isolates the singular part. We therefore
seek au evaluation in the form

$2(E)=-+ In++T(E) , og~<2 (A17)

.—
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where T is a convergent power series

w

I
T(E) = aj~j

j=o

If the function E(z) in the line integral

37

(u8)

a+i.fd

Q(g)=* J’ez%(z)dz (~9)
a-iw

is expanded as an asymptotic series, the desired series expansion of
0(E) can be obtained through term-by-term

For lsrge values of Izl, asymptotic

.

where

integration.

expansions of Kl, 11 are

Isrg zl < 3Yc/2

1

(A20)

-s/2 < arg z < fl/2

)
(lEL)

%= (l,IU)= (-1)
m+=(~+l)[(a)!12=( 2tn+l)(3-“@ ~-=

16m(2m -1) (m!)S km

so that for small ~ equation (JU9) yields

a+iw

U

n(g) = & Se F(l/z) I-1dz(A22a-imzF(-1/z)- ie-zF(l/z)

The term e-%?(l/z) in the denominator caq be negleated if Re(z)

(i.e., if a) is chosen sufficiently large and positive. Thus

. ..— — . .—— —— .- —___ ____ ._. _ . ——. .—. .
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(A&)

Expandingthe bracketed term as a series h 1/22, one obtains

or, afterterm-by-termtitegration

9 ogg<2 (A24)
.

where the coefficients ~ may be determined h succession from the
relations

c== Z$b=

c== clbl

Cg = c2b1- c1b2+ 2b9

1“

(A@

If use is now made

● ☛☛☛

~-2ba+ . ..+ (-l)mc=~-l + [1+ (-l)m+l]h J

of the expsnsion

co

ln(2-g)=ln2-
1 ()

;~m.

IEl

(A%)

it follows that the series T in eqyations (A17) and (~8) iS given by

(A27)

—. ——— ..— ..— —— --- -—. — —---- ------- -—. —.—-.-. —
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and that the influence function 0 can be expressed in the fti form

.. . ..— . ..- .— .--— ——— --— — —..—.
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